Bayesian inference of Weibull distribution based on left truncated and right censored data
نویسندگان
چکیده
This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When the shape parameter is unknown, the closed form expression of the Bayes estimates cannot be obtained. We propose to use Gibbs sampling procedure to compute the Bayes estimates and the associated highest posterior density credible intervals. Two data sets, one simulated and one real life, have been analyzed to show the effectiveness of the proposed method, and the performances are quite satisfactory. We further develop posterior predictive density of an item still in use. Based on the predictive density we provide predictive survival probability at a certain point along with the associated highest posterior density credible interval and also the expected number of failures in a given interval.
منابع مشابه
Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملComparison of three Estimation Procedures for Weibull Distribution based on Progressive Type II Right Censored Data
In this paper, based on the progressive type II right censored data, we consider estimates of MLE and AMLE of scale and shape parameters of weibull distribution. Also a new type of parameter estimation, named inverse estimation, is introdued for both shape and scale parameters of weibull distribution which is used from order statistics properties in it. We use simulations and study the biases a...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملEstimation and Reconstruction Based on Left Censored Data from Pareto Model
In this paper, based on a left censored data from the twoparameter Pareto distribution, maximum likelihood and Bayes estimators for the two unknown parameters are obtained. The problem of reconstruction of the past failure times, either point or interval, in the left-censored set-up, is also considered from Bayesian and non-Bayesian approaches. Two numerical examples and a Monte Carlo simulatio...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 99 شماره
صفحات -
تاریخ انتشار 2016